Tools for Developing Learning Skills in Children

The natural way for a child to learn is through play. For children play and learning goes hand in hand; they will benefit from learning situations that are enjoyable. By using building blocks, working with jigsaws and threading toys, and matching colors, textures, and shapes, children acquire essential skills, which enable them to learn to read, write and count.Children will invent their own games and toys, but well-designed toys can provide stimuli for exploring and discovering new things. Toys need not be expensive or complicated. The best toys are ones that fascinate a child and to which he will return again and again. Often a household item will provide your child with the kind of playthings he needs to ensure future intellectual achievement, it is not necessary to buy even one educational toy.Providing a Stimulating EnvironmentOne of the ways to encourage your child’s development is to foster creative play with an inviting environment. The way you display your child’s toys to a large extent determines whether they will be played with or not. Toys that are piled high are not inviting, whereas toys arranged into little scenes, stimulate him to sometimes even make other creative arrangementsIt helps if there are spaces to play in, particularly activity areas, like a painting table and somewhere he can splash about with water. An interesting environment should not only be confined just to indoors. If you have a garden, fill it with suitable equipment, like swing, a slide, and even a little play hill-all of which stimulates your child’s imagination


Choosing ToysParents sometimes feel frustrated when they spend hours choosing the safest, most colorful, most fun, and even educational toy for their child, only to learn that he will be clinging to his old toy. It is almost impossible to choose a ‘best toy’ for your child. The one that is best for his is the one that fascinates him endlessly, and to which he will return gaining more and more stimulation and enjoyment and will provide him the greatest learning experience.The less formed ad more basic a toy, the more possibility it leaves for a child’s imagination and may help his creativity, more than a very expensively dressed doll which can only be one character.One of the most important things to remember is that children change very rapidly, especially in the first 3 years and that a toy which entertains a two-month-old, will not entertain a two-year-old. As they develop they need different stimuli and the choice of toys must reflect these needs. The toy chosen must be appropriate for his age. If it is too good advanced then he will not know to play with it in the proper manner, and will not gain enjoyment. If on the other hand, it is too primitive, he will get bored easily. Toys must stimulate all the 5 senses-vision, hearing, touch, smell and taste.Having decided upon the appropriate type of toy for him, you must also consider a few more things. Is it completely safe? Is it stimulating? Does it have play value? Is it fun? For example, a bag of bricks is a ‘good’ toy to buy because it can be enjoyed at different ages with pleasure and will stimulate imaginative and active play. Toys that fit together or snap together teach children that they can change the appearance with dexterity.Safety is also a very important consideration when choosing or making a toy. You must not only check for dangerous design faults when purchasing them but also at check for defects at regular intervals. It is impossible to provide a child with a totally safe environment. However, you must take sensible safety precautions and satisfy his inquisitiveness with safe indoor toys. Your children must always be properly supervised and never left to play alone outdoors.Using Household Items to Make ToysYou do not have to spend a lot of money to provide him with the best toy money can buy. A quick look around the kitchen can provide your child with hours of fascinating fun.ContainersPlastic food containers are the most versatile household toys. Plastic containers of different sizes can be used for putting in-taking out games. Put a few dried pulses in a firmly closed container and you have a rattle saucepans with wooden spoons create drum sets.FoodDried pulses can be stuck on pieces of card to make kitchen collages. Vegetables like potatoes and carrots can be made into printing blocks.Paper GoodsToilet rolls with a little decoration make finger puppets. Hand puppets can also be made from paper bags. Empty cotton reels when threaded together makes a good pull toy, especially if painted to resemble a caterpillar.Avoid T.V. in Young Kids


TV has the mesmerizing and numbing effect on children and cuts them off from the direct experiences of their own world which are needed in order to develop. TV cuts down on the amount of social contact with the parent which is important for social and linguistic development.Books and ReadingA single way, in which a parent could enrich a child’s environment, is by having books in the house. Words are crucial to the way our brains function. Books provide children with words to express feelings, ideas, and thoughts. They explain the world he lives in. They provide the tool for imaginative play, introduce ideas and are fun.Try to read to your child every day, or even several times a week and preferably at the same time. Choose books that are visually appealing with illustrations. Children like photos of people, places, and events, with which they are familiar.Fairy tales are fascinating to children, and they will learn to distinguish between real and unreal. They also encourage abstract thoughts and creative thinking.The vocabulary should be easy to understand and the print big. Run your finger along the print, but do not force him to follow your finger. Make him notice things in the pictures. Re-read books for your child, especially if he asks you to. Don’t stop reading to him even though he starts to read by himself. Teach him to take care of books. Store books on low bookshelves in his room as this will encourage browsing, and always have a variety on hand.

Decoding the Ductwork Design Process, Methods and Standards

Today, one of the significant objectives in MEP engineering design for HVAC design engineers is to improve energy efficiency, maintain air quality and thermal comfort. Energy efficiency, air quality and comfort in a building depend on how heating, cooling and air distribution systems are designed and this is where careful ductwork design plays a significant role. Ductwork and HVAC system design are important as it ensures indoor air quality, thermal comfort and ventilation. If the HVAC system and ducts are not designed accurately, it could lead to poor air quality, heat loss and make the conditioned space in the building uncomfortable.

The primary function of the ductwork design system is to ensure a least obtrusive channel is provided through which cool and warm air can travel. When designed accurately, HVAC air distribution systems will play an important role in countering heat energy losses, maintaining indoor air quality (IAQ) and providing thermal comfort.

To understand how ductwork can be designed in a cost-effective and efficient manner, this article decodes ductwork design and provides a brief outline of the design process, methods and standards.

What is Ductwork?

The basic principle of ductwork design is to heat, cool or ventilate a building in the most efficient and cost-effective way. The primary function of ductwork is to design conduits or passages that allow air flow to provide heating, cooling, ventilation and air conditioning (HVAC).

In the duct design process, the basics of air flow must be understood. Return air goes into an air handler unit (AHU), through a filter and into the blower and with pressure it goes through the A coil or heat exchanger and then it goes out into the supply air system. If the ductwork is designed correctly it enables the AHU to produce the right amount of air through the heat exchanger. In a typical air distribution system, ducts must accommodate supply, return and exhaust air flow. Supply ducts provide air required for air conditioning and ventilation, return ducts provide regulated air to maintain IAQ and temperature and exhaust air flow systems provide ventilation.

For ductwork design to be efficient, MEP engineering design teams need to have designers with a mechanical and engineering background. Ductwork design specialists or building service engineers must also possess thorough knowledge of other disciplines such as architectural, civil and structural concepts to ensure HVAC systems are clash free.

The Ductwork Design Process

The ducting system design process is simple, provided that the specifications are clearly mentioned and the inputs regarding application, activity, building orientation and building material are provided. Based on the information provided calculations can be completed to create an energy-efficient and clash-free design. Typically, air conditioning and distribution systems are designed to fulfil three main requirements such as:

• It should deliver air flow at specific rates and velocity to stipulated locations.

• It should be energy efficient and cost effective.

• It should provide comfort and not generate disturbance or objectionable noise.

The process of ductwork design starts once architectural layouts and interior design plans are provided by the client or MEP consultants. Building service engineers then require specification requirements such as application, the number of people, the orientation of the building and architectural characteristics to make calculations on heat load and air flow. Before any calculations are carried out, single line drawings are drafted to showcase the flow of ductwork in the building. Once they are approved, calculations for heat load and air flow are conducted. Once the heat load calculations are complete, the air flow rates that are required are known and the air outlets are fixed. With the calculations, specifications and layout, the ducting system design layout is then designed taking into consideration architectural and structural details of the conditioned space and clashes with other building services such as electrical, plumbing (hydraulic) and mechanical services.

To start the ductwork design process there are inputs required regarding details about the type of application, specification requirements, building orientation, architectural characteristic and material.

• Application type - Ductwork design will vary based on the type of application the building will be used for such as manufacturing, data centres, medical applications, scientific research and comfort applications such as restaurants, offices, residences, institutional building such as schools and universities.

• Specification requirement – To create an efficient duct design, designers need to know what type of activity will be conducted and the average number of people that will use the conditioned space. This will help in calculating the air flow, velocity and heat load required to maintain temperatures and IAQ. In comfort applications, for instance, an office or restaurant will require different duct design and air velocity than a residence.

• Orientation and material of the building - The orientation of building and material used plays a key role in gauging heat absorption which will help determine the cooling and ventilation requirements. Based on whether a building faces north, south, east or west, and where it is geographically located, heat absorption can be calculated. The type of material used for construction also affects the amount of heat gain and loss of the building.

The challenges of incomplete inputs or non-availability of required inputs are discussed in an upcoming article on Ductwork Design Challenges and Recommendations.

Ductwork Design Methods

Ductwork design methods are usually determined based on the cost, requirements, specifications and energy efficiency standards. Based on the load of the duct from air pressure, duct systems can typically be classified into high velocity, medium velocity and low velocity systems. There are three commonly used methods for duct design:

1. Constant Velocity Method – This method, designed to maintain minimum velocity, is one of the simplest ways to design duct systems for supply and return air ducts. However, it requires experience to use this method as the incorrect selection of velocities, duct sizes and choice of fixtures could increase the cost. Moreover, to maintain the same rate of pressure drop in duct runs, this method requires partial closure of dampers in duct runs (except index run) which could affect efficiency.

2. Equal Friction Method – This conventional method used for both supply and return ducts maintains the same frictional pressure drop across main and branch ducts. This method ensures dissipation of pressure drops as friction in duct runs rather than in balancing dampers. However, like the velocity method, partial closure of dampers is required and this could lead to noise generation.

3. Static Regain Method – This method commonly used for large supply systems with long ducts is a high velocity system that maintains constant static pressure before each branch or terminal. While this is a balanced system as it does not involve dampering, longer ducts may affect air distribution to conditioned spaces.

While different duct design methods used vary from application to application, duct system performance and system balancing and optimisation need to be considered. After the air handling unit (AHU) is installed, the system needs to be balanced and optimised to enhance performance. In system balancing and optimisation, air flow rates of supply air outlets and return air inlets are measured, and dampers and fan speed are adjusted. Especially in large buildings, balancing air conditioning systems may be expensive and time-consuming, but it is required as it provides benefits that outweigh the cost incurred in installing the system. To minimise total and operating cost, many optimisation methods are used as such as the T-Method Optimisation described in the DA3 Application Manual of AIRAH (Australian Institute of Refrigeration Air Conditioning).

To design air distribution systems that are energy efficient and cost effective, HVAC system designs must include basic engineering guidelines and adhere to certain design standards. Let us consider some of the guidelines and standards used in the industry in different countries.

Ductwork Design Standards

When designing air conditioning systems, HVAC design engineers must be knowledgeable about the basic methods, guidelines and standards applicable, from the type of units used, calculations required, methods of construction, type of material, duct system layouts, pressure losses, duct leakage, noise considerations to optimisation using testing, adjusting and balancing (TAB). Listed below are some of the standards organisations and associations in the U.S., U.K., Australia and India, that provide manuals, codes and standards for the HVAC industry.

U.S.

• SMACNA (Sheet Metal and Air Conditioning Contractors’ National Association) – It provides a manual on HVAC systems duct design that includes basic yet fundamental methods and procedures with importance on energy efficiency and conservation. While the manual does not include load calculations and air ventilation quantities, it is typically used in conjunction with the ASHRAE Fundamentals Handbook.

• ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) – It is an association that emphasises on the sustainability of building systems by focusing on energy efficiency and indoor air quality. The ASHRAE Handbook is a four-volume guide that provides the fundamentals of refrigeration, applications, systems and equipment. Updated every four years, the handbook includes international units of measurement such as SI (systems international) and I-P (inch-pound).

U.K.

• CIBSE (The Chartered Institution of Building Services Engineers) – is the authority in the UK that sets standards for building services engineering systems. The Codes and Guidelines published by CIBSE are recognised internationally and considered as the criteria for best practices in the areas of sustainability, construction and engineering.

• BSRIA (Building Services Research and Information Association) – is an association that provides services that help companies enhance their designs to increase energy efficiency in adherence to Building Regulations, mock-up testing of systems and BIM support.

Australia

• AIRAH (Australian Institute of Refrigeration Air Conditioning) – provides technical manuals for professionals in the HVAC industry and information ranging from air conditioning load estimation, ductwork for air conditioning, pipe sizing, centrifugal pumps, noise control, fans, air filters, cooling towers, water treatment, maintenance, indoor air quality and building commission.

India

• BIS (Bureau of Indian Standards) – is a national authority that provides standards and guidelines as per the International Organization for standardisation (ISO). The handbooks by BIS stipulates the code of practices applicable to the HVAC industry such as safety code for air conditioning, specification for air ducts, thermostats for use in air conditioners, metal duct work, air-cooled heat exchangers and data for outside design conditions for air conditioning for Indian cities

• ISHRAE (The Indian Society of Heating, Refrigerating and Air Conditioning Engineers) – provides indoor environmental quality standards and testing and rating guidelines based on common IEQ parameters standards and criteria for the classification of buildings based on energy efficiency.

While HVAC design engineers must keep relevant standards in mind and ensure that local codes are applied in designs, energy efficiency is a primary objective as well. Ductwork design plays a significant role in regulating indoor air quality, thermal comfort and ventilation. The key function of ductwork design is to provide the least obtrusive channel through which cool and warm air can travel in the most efficient and cost-effective way.

Inaccurate duct designs could result in poor indoor air quality, heat loss and uncomfortable conditioned space in the building. A well-designed air conditioning HVAC system will ultimately optimise costs. By regulating pressure loss, selecting the right duct size, balancing air pressure and controlling acoustics, ductwork designers could optimise manufacturing, operational, environmental and commissioning costs.

 

Successful Design Management for the 6 Stages of Design of Infrastructure and Building Projects

Design Management

Design Management seeks to establish project management practices that are primarily focused on enhancing the design process. For Infrastructure and Building projects the successful implementation of Design Management throughout the entire Project Life Cycle can represent the difference between a superior outcome for the project in terms of Quality, Timing, Cost and Value or failure, given the complexity of Infrastructure and Building projects in today’s environment.

Design Management is however primarily focused on the Design Process within the project framework and as such is only a part of the overall Project Management of a project, albeit a critical part of the project.

If you are going to be a successful Design Manager and achieve superior outcomes for both your clients and your own business, you cannot manage design haphazardly and expect consistent results. You must manage design projects by undertaking a proven stage by stage process. This brief article outlines those stage by stage processes and gives the Design Manager a guide to successfully design managing Infrastructure and Building projects. The Design Management role is considered in this article in the context of an in-house or consultant client side Design Manager and not a Design Manager within the design team itself. It is also on the basis of a fully documented Design and Construct only contract.

Stage 1: Early Design Management Involvement-Statement of Need

The output for this stage will be a Design Report that will directly feed into the Client’s Statement of Need and overall Business Case.

Early involvement to the Project Life Cycle is important but this may need to be reinforced with the Client to appreciate and understand the benefits this will provide. There are several key tasks during this stage:

1.1 Obtaining and Assessing all the available key design Information

  • Collation of all available data and information
  • Visit the site
  • Review contract as related to design aspects
  • Review the level of the design that has been prepared to date
  • Evaluate information and highlight critical issues
  • Review findings with Client
  • Assess the team capability requirements and resourcing
  • Assess any spend on fees required at this stage
  • Engage consultant as required to provide required technical and project inputs to assist the preparation of the design report.

1.2 Design Risk Review

  • Identify design risks and create a Design Risk Register
  • Identify any Safety in Design issues
  • Analyse and provide suggestions for risk mitigation for ongoing stages
  • 1.3 Design Report Input to Statement of Need
  • Prepare draft of design report input into the Statement of Need report and review with Client
  • Prepare final Design Report component into the Statement of Need report

Stage 2: Design Management during the Outline Design Stage

With the Statement of Need or Business Case formally approved for the project to proceed, the next step is to get the Outline Design Stage going.This stage involves clearly defining the Client requirements and project needs so as to form a sound foundation for the design process to proceed and is the right time to engage consultants and set up the formal Design Management process. The following are the key tasks in this stage:

2.1 Define Client design requirements and project design needs

  • Gather all available and updated project data from the Client.
  • Identify any gaps in the information provided.
  • Meet with the Client to review the information provided and identify additional information required.
  • 2.2 Engage Design Consultants
  • Engage all the key consultants that are required to develop the Functional Design Brief. It is critical that the consultant’s scope of work is clear for the level of input required and clearly noted in their Contract.

2.3 Prepare Functional Design Brief

  • Manage and coordinate the consultant team to deliver the Functional Design Brief that will respond to and record all the client requirements and needs and form the basis to proceed for all disciplines.
  • The Functional Brief will generally be supported by Concept design sketches that provide an outline of the proposed design.

2.4 Prepare the Design Management Plan (DMP)

The DMP provides the roadmap for the way the design will be managed and needs to be prepared at this stage of the design process for best results. The DMP is a component of the Project Management Plan prepared by the Project Manager.

The key Design headings in a DMP are as follows:

  • Introduction
  • Project Overview
  • Objectives
  • Process and related procedures
  • Status
  • Documentation & Deliverables Schedule
  • Value Engineering
  • Reviews
  • Change Management
  • Independent Third Party Checks, Permits
  • Quality Management
  • Client Approvals
  • Close Out & As Built Record

2.5 Outline Cost Plan

  • Manage and coordinate the development of the Outline Cost Plan with the Quantity Surveyor, with input from all the relevant consultants.

2.6 Identify Design Risks

  • Identify Design Risks within the overall Risk Management framework.
  • Analyse and manage risks and update the Risk Register, design out risks where possible.
  • Ensure Safety in Design requirements are followed.

2.7 Value Management

  • Arrange a Value Management workshop. Value Management is a systematic review of the essential functions or performance of a project to ensure that best value for money is achieved. It takes an overall view of the function of the project as well as capital and recurrent costs.
  • Prepare a Value Management Report and implement recommendations.

2.8 Project Approvals

  • Outline and define the planning approval process and coordinate with the design process requirements.

Stage 3: Design Management during the Schematic Design Stage

With the Outline Design Stage formally approved for the project to proceed to the next stage, the next step is to get the Schematic Design Stage going. This stage involves developing the design across all the disciplines in response to the approved Functional Design Brief. The following are the key tasks in this stage:

3.1 Manage the Development of the SchematicDesign

  • Manage the team in developing the Schematic Design.
  • Monitor the compliance of the Schematic design with the Functional Design Brief.
  • Review Design Programme and coordinate with overall project programme.
  • Coordinate the development of the Schematic Design with the project procurement process.
  • Manage the preparation of the Schematic Design Report which contains drawings and outline specifications for all disciplines.

3.2 Schematic Design Cost Plan

  • Manage and coordinate the development of the Schematic Cost Plan with the Quantity Surveyor, with input from all the relevant consultants.
  • Identify any major design decisions to the Quantity Surveyor that could influence cost.

3.3 Identify Design Risks

  • Identify Design Risks within the overall Risk Management framework.
  • Analyse and manage risks and update the Risk Register, design out risks where possible.
  • Ensure Safety in Design requirements are followed.

3.4 Value Engineering

  • Arrange a Value Engineering Workshop, including external peer reviewers to negate any “built in” resistance to change and get a fresh perspective
  • Prepare a Value Engineering Report and present to the Client and implement approved Value Engineering recommendations within the Schematic Design Report or in the detailed design stage as appropriate.

3.5 Project Approvals

  • Review and update the planning approval process and coordinate with the design process requirements.
  • Manage the submission of any required Planning Approval Applications.

3.6 Update the DMP

  • Review and update the DMP as required catering for the current project circumstances.

Stage 4: Design Management during the Detailed Design Stage

With the Schematic Design Stage formally approved for the project to proceed to the next stage, the next step is to get the Detailed Design Stage going. This important stage involves developing the design to tender and construction across all the disciplines in response to the approved Schematic Design Report. The following are the key tasks in this stage:

4.1 Manage the Development of the Detailed Design

  • Manage the team in developing the Detailed Design ready for tender including as required coordination meetings between disciplines experiencing coordination difficulties and the exchange of progress design drawings and specification for proper inter-disciplinary coordination.
  • Manage changes and variations.
  • Monitor the compliance of the Detailed Design with the Schematic Design Report, Value Engineering recommendations and the Functional Design Brief.
  • Review Design Programme and coordinate with overall project programme
  • Coordinate the development of the Detailed Design with the project procurement process including early issue of documents to the Quantity Surveyor to start the Bill of Quantities. Any “shortcuts” in the deliverables to accommodate the tender programme need to be fully understood and agreed
  • Coordinate the inputs to the development of the Contract documents being prepared by the Project Manager
  • Consider the requirement for lead disciplines that are producing background and base drawings, such as architects on building projects, to complete these ahead of the supporting engineering disciplines, so as to allow the supporting disciplines adequate time to complete their dependent work. The team cannot realistically work effectively all in parallel to deliver all at the same time without some lag with the lead discipline. It also allows time for the lead consultant to review the documentation from the dependent disciplines. Allow adequate time in the design programme for this lag in completion and coordination.

4.2 Detailed Design Cost Plan and Pre Tender Estimate

  • Manage and coordinate the development of the Detailed Cost Plan with the Quantity Surveyor, with input from all the relevant consultants.
  • Identify any major decisions to the Quantity Surveyor.
  • Prepare for the Pre Tender Estimate (PTE).
  • Take any required action if the PTE is in excess of the Detailed Design Cost Plan.

4.3 Identify Design Risks

  • Identify any additional Design Risks within the overall Risk Management framework.
  • Analyse and manage any remaining risks and update the Risk Register, design out risks where possible
  • Ensure Safety in Design requirements are followed

4.4 Peer Review and Value Engineering

  • Arrange for the drawings and specifications that are being prepared for Bill of Quantities or that are at 90% completion to be issued for external Peer Review to review the “tender readiness” of the tender documents for each of the disciplines. This is also the time to review the consistency of the presentation of the documents across all disciplines and the adherences to project protocols such as title sheet formats, sheet sizes, drawing extents and overlaps, drawing scales, document numbering and revision notation.
  • As part of the Peer Review, Value Engineering of the detailing within the tender documentation should be undertaken at the same time to ensure the detailed design is the most efficient possible.
  • Manage the peer review responses and issue to the team to respond to the comments and incorporate the recommended and agreed comments or mark ups. Allow adequate time in the design programme for this important process.

4.5 Project Approvals

  • Review and update the planning approval process and coordinate with the design process requirements.
  • Manage the submission of any required Planning Approval Applications.
  • Obtain any required certification from the consultants.
  • Manage any required inputs to obtain the required Planning and Building approvals.

4.6 Update the DMP

  • Review and update the DMP as required to cater for the current project circumstances
  • 4.7 Tender Readiness Report
  • Prepare Tender Readiness report to the Client recommending issue to tender including any project issues or risks and the PTE.

Stage 5: Design Management during the Tender Stage

With the Detailed Design Stage Tender Readiness Report formally approved for the project to proceed to Tender, the next step is to arrange the design documents to be issued for tender. The following are the key tasks in this stage:

5.1 Prepare Design Documentation for Tender

  • Manage the team in delivering the documents as per the DMP at the required time in the required hardcopy and soft copy formats to the required locations.
  • Collate the required document transmittals.

5.2 Housekeeping

  • Take the opportunity to catch up with housekeeping of files on the server, in local drives and hardcopies.

5.3 Tender Technical Queries and Clarifications

  • Manage all incoming tender technical queries and clarifications during the tender period and arrange responses from any of the team where required.
  • Participate in any Tender clarification meetings with the contractor as requested by the Project Manager.

5.4 Addendums

  • Manage any design and documentation requirement for addendums that are required due to omissions from the Tender due to time constraints or from new Client requirements.

5.5 Tender Evaluation

  • Manage all required technical tender review and evaluation inputs from the team to allow the tender to be evaluated from a technical perspective.
  • Where required prepare a technical evaluation report and deliver to the Project Manager.
  • Participate in any negotiation meetings where technical matters require further clarification and arrange appropriate technical inputs from team.

5.6 Manage Consultants

  • Manage the finalisation of design related fees and any outstanding variations and claims.

Stage 6: Design Management during the Construction Stage

With the Tender formally awarded and on the assumption that the Project Manager will typically manage the construction phase delivery of the project, then the role of Design Manger will generally be reduced during this stage to a support role only or where required due to incomplete or ongoing design development resulting from client variations or changes made during tender negotiations. The following are some of the key tasks in this stage:

6.1 Issue Approved For Construction(AFC) documents

  • Manage the team in delivering the AFC documents as per the DMP at the required time in the required hardcopy and soft copy formats to the required locations.
  • Collate the required document transmittals

6.2 Housekeeping

  • Take the opportunity to complete the housekeeping of files on the server, in local drives and hardcopies

6.3 Outstanding Design

  • Manage the team in delivering any outstanding design due to client changes or changes resulting from tender negotiations

6.4 Manage Contractor Design Submissions

  • Subject to the complexity of the design, assist the Project Manager to manage the team in reviewing and responding to any contractor designs.

Design Management in Action

The above methodology represents a general approach for Design Managing Infrastructure and Building Project. This methodology has been applied successfully to numerous projects undetaken by the author, however as any Design Manager will know, every project is different and every design and project team is generally comprised of different team members.

The key to making the above methodology work is studying, applying and start implementing it to suit your particular project. It offers focus and a clear direction for any design for an Infrastructure or Building project to achieve a superior outcome for your Client and your own business.

Trends That Set You Apart: SEO Techniques That Every Web Designer Should Know

If it was a decade back, then the term ‘SEO’ and web designing wouldn’t have gone parallel. But today the thing is something different. The web-smart world wants more from us and being exclusive is the first requirement of the customers. Webbing the business in a smart way along with decorating and designing the website for a fresh promotion is the new in nowadays.

Web designing incorporates a lot of strategical tasks and implementing them one by one enhances the front-end beauty of the website. It combines a lot of work with the frameworks, the programming languages, CMS or Content Management System, pre-decorated templates, web designing tools and hosting platform. On the other hand, it takes a lot of planning, sketch, graphical designing and strategy building for designing websites. A web design company deploys professional and experienced web designers who will perform all these tasks single-handedly.

The major job of a web designer is to produce the perfect UI & UX designs that will allure the viewers with its unique design. But, today, most of the web designers need to know about a little bit of SEO that will help them to understand its significance in terms of generating traffic to the website and allows them to comprehend its importance in the designing field.

SEO or Search Engine Optimization involves the process of optimizing the website by analyzing the site itself. This is connected to the designing and coding of the website for which the designers should be in the practice of these methods. So, that is why the designers should keep in mind certain things before designing the website.

Mobile Responsive Design
The demand for the mobile first designs has taken the interest of the consumers due to the major shift of searching methods from desktop to mobile. As the huge number of customers is using the smartphones nowadays and search almost everything from their smartphones instead of switching on their desktops and PCs, designing responsive websites has become a necessity for the entrepreneurs for increasing the visibility of their websites. The emergence of Google’s mobile-friendly algorithm has also facilitated the mobile responsive search results, pushing backward the nonresponsive websites in terms of amenity.

This has invoked the designers to use the mobile responsive templates and tools. The designers should use coding & programming that is utterly suited for mobile. The contents should be fit in the screen resolution of the mobile and the layout should be mobile first for the smooth access from the smartphones or cross platform devices.

URL Orientation
Search engines can’t find ambiguous and vague URL identity. The clear format of the URL makes your website SEO-friendly. With a perfect URL, the chances of getting the visibility to the viewers are more. Moreover, incorporating keyword phrases with the URL allows your users to identify and find the URLs easily and quickly. A designer should know about this so that they can easily collaborate with the SEO team of their respected companies.

Enhancement of the Website Speed
Improving the site speed is the major part of the SEO. Google’s algorithm supports the websites that have a good loading speed and disapproves the sites whose loading speed are worst! This is because the users don’t like websites with low loading speed and chances of the increase in the bouncing rate also raises up. Thus, improving the speed of your site is a much-needed thing, which can’t be optimized without the help of the designers. The speed augmentation process lies within the back-end service provided by the designers which include optimizing the database, minimizing HTTP requests, compressing images, reducing server requests, minifying resources, enabling the browser caches and accessing a CDN or Content Delivery Network.

Without the perfect knowledge of SEO and without the comprehension of the importance of site loading speed on SEO, the designers won’t understand its significance. So, for a perfect collaboration, the knowledge of site loading speed is required for the designers.

Pertinent Title Tags
Exclusive & relevant title tags are important for phrasing up an online document and those title tags are only used in the rich snippets aftermath. These title tags are displayed in the SERPs, on the browser, and on the external websites and should be smaller in size so that Google can easily catch them up.

Validated HTML5 And CSS3 Usage
HTML5 & CSS3 enables your website to fit in any resolution. HTML5 is advanced with much more features than the HTML and CSS3 enhance the downloading speed of the page. Authenticated HTML5 & CSS3 helps in implementing good coding that will optimize on-page SEO easily.

In most of the web design companies, the perfect collaboration of SEO and web designing teams is the major requirement because their harmony optimizes the entire website which results in bringing clarity on the front-end website with an aim of increasing more traffic and enhancement of conversion rate.